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This is an assignment on the course Statistical Mechanics of Neural Networks at the School of Physics,
Sun Yat-sen University in the fall of 2024. We reviewed several theoretical solutions of the Sherrington-
Kirkpatrick model in history. Through numerical calculations, we recover the phase diagram in the level
of the replica symmetric solution. We obtain the free energy calculated by the replica symmetric solution
and the cavity iteration equations on sparse graphs and compare these with the result from calculating the
partition function by enumeration method for N = 10.

I. INTRODUCTION

The Hamiltonian of the Sherrington-Kirkpatrick model reads [1]

H = −
∑
i<j

Jijσiσj − h
∑
i

σi, (1)

where σi ∈ {1,−1} are Ising spins, the interaction Jij between any two spins is a quenched variable with the Gaussian
distribution Jij ∼ N (J0/N, J2/N). The mean and variance of this distribution are both proportional to 1/N :

⟨Jij⟩ =
J0
N

,
〈
J2
ij

〉
=

J2
0

N2
+

J2

N
. (2)

In some literature, the SK model without an external field is used, which can be obtained by setting h = 0 in any step
of this article.
The probability of each configuration is given by the Gibbs-Boltzmann distribution P (σ) = 1

Z e−βH(σ), where Z
is the partition function. We denote the expectation value with respect to the Boltzmann measure by ⟨⟨·⟩⟩, and the
configuration average over the distribution of Jij by ⟨·⟩. The free energy after the quenched average is calculated as
⟨F ⟩ = − 1

β ⟨lnZ⟩. The Boltzmann average value of the spin, called the local magnetization, is mi = ⟨⟨σi⟩⟩, and the

magnetization of the system is m = ⟨mi⟩.
Due to the frustrated phenomenon, the spin in the SK model is frozen at low temperature, yet remains highly

disordered, with the order parameter m = 0. This is a phase distinct from the paramagnetic phase and is called the
spin glass phase. In order to distinguish between the two phases, it is necessary to introduce the so-called Edwards-
Anderson parameter [2], defined as q = ⟨⟨⟨σi⟩⟩2⟩.

FIG. 1: Phase diagram of the Sherrington-Kirkpatrick model. [3]

Based on the different values of the order parameters m and q, the SK model can be divided into three different
phases. The magnetization m distinguishes between the paramagnetic phase (m = 0) and the ferromagnetic phase
(m ̸= 0), while the EA order parameter q distinguishes between the paramagnetic phase (q = 0) and the spin glass
phase (q ̸= 0).
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II. MAIN THEORETICAL SOLUTIONS

The first solution to the SK model was obtained by Sherrington and Kirkpatrick in 1975 when they first propose
the model. [1] This solution is known as the replica symmetric solution, introduced by Edwards and Anderson [2].
The order parameters m and q are the fixed points of the following equations:

m =

∫
Dz tanhβH̃(z), (3)

q =

∫
Dz tanh2 βH̃(z), (4)

where Dz ≡ dz e−z2/2/
√
2π and H̃(z) ≡ J

√
qz + J0m+ h. The free energy is calculated as

fRS = −1

4
βJ2 (1− q)

2
+

1

2
J0m

2 − 1

β

∫
Dz log

(
2 coshβH̃(z)

)
. (5)

However, this solution was found to have the negative value − 1
2π of the ground state entropy for J0 = h = 0. In 1978,

de Almeida and Thouless analyzed the stability of the replica symmetric solution [4] and found that it is stable only if(
T

J

)2

>

∫
Dz sech4 (βJ

√
qz + βJ0m) for h = 0,

(
T

J

)2

>

∫
Dz sech4 (βJ

√
qz + βh) for J0 = 0, (6)

which corresponds to the high-temperature regime. Eq. (6) describes the boundary of the stability region, which is
known as the dAT line.
In 1977, Thouless, Anderson, and Palmer proposed the TAP equation [5], trying to solve the negative entropy crisis.

This is a high-temperature expansion solution for the SK model. Given the random interactions {Jij}, the local
magnetization satisfies

mi = tanhβ

(∑
j

Jijmj + h− β
∑
j

J2
ij(1−m2

j )mi

)
. (7)

The third term is called the reaction field of Onsager and is added to remove the effects of self-response. The free
energy is calculated as

fTAP = −1

2

∑
i̸=j

Jijmimj−
∑
i

himi−
β

4

∑
i ̸=j

J2
ij(1−m2

i )(1−m2
j )+

1

2β

∑
i

{
(1 +mi) log

1 +mi

2
+ (1−mi) log

1−mi

2

}
.

(8)
The validity of the TAP equations for high temperature has been proved by Talagrand [6, 7], Chatterjee [8] and
Bolthausen [9], while there is no rigorous proof at low temperature.
In 1979, Parisi proposed the replica symmetry breaking solution [10–15], which is believed to be the only exact

solution so far. The free energy of the RSB solution is given by

fRSB = −1

4
βJ2

{
1 +

∫ 1

0

q(x)2dx− 2q(1)

}
− 1

β

∫
Du f0(0,

√
q(0)u), (9)

where f0 satisfies the following Parisi equation:

∂f0(x, h)

∂x
= −J2

2

dq

dx

{
∂2f0
∂h2

+ x

(
∂f0
∂h2

)}
. (10)

In 1987, Mézard, Parisi and Virasoro introduced a new method, which does not use replicas, but can recover all the
results of the replica symmetry-breaking solution of the SK model.[16] They titled their work The Replica Solution
without Replicas, which later is known as the cavity method. The vanilla cavity method can directly derive the TAP
equations (7), and through a more rough approximation, it can back to the RS solution (3)(4). Later, this method
was found to be powerful in dealing with optimization problems [17], such as the K-satisfiability problem [18]. More
importantly, it is equivalent to belief propagation, also known as sum-product message passing, which is an efficient
algorithm applied to sparse graph models [19], as discussed in Chapter 2 in SMNN book [20]. Although the SK model
considers fully connected interactions, which is a dense graph rather than a sparse one, we can still do approximate
calculation by the cavity iteration equation as following

hi→ij =
1

β

( ∑
k(̸=i,j)

βuik→i

)
, (11)

uij→i =
1

β
tanh−1

[
tanh (βJij) tanh (βhj→ij)

]
. (12)
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By iteratively solving for uij→i, we can then solve for mi using

mi = tanh

( ∑
j(̸=i)

βuij→i

)
, (13)

and then we can calculate the free energy by F =
∑

i ∆Fi −
∑

⟨ij⟩ ∆Fij , where

∆Fij = ln

[
cosh(βJij)

(
1 + tanh(βJij)mi→ijmj→ij

)]
, (14)

∆Fi = ln

(∏
j ̸=i

Λ+
ij→i +

∏
j ̸=i

Λ−
ij→i

)
, (15)

and

Λ±
ij→i = cosh(βJij)

[
1± tanh(βJij)mij→i

]
. (16)

Equations (11)∼(16) can converge to the RS solution in the limit N → ∞.
In this paper, we primarily focus on the cavity iteration equations for finite N and the RS solution in the limit

N → ∞. The TAP equations will be discussed in detail in Chapter 5 of the SMNN book, while the RSB solution is
beyond the scope of this paper.

III. MAIN RESULTS

A. the order parameters

We calculated the magnetization m and the EA parameter q for the RS solution and the cavity iteration solution in
the ranges T/J ∈ [0, 2] and J0/J ∈ [0, 2] using a grid-based approach, and recorded the number of iteration steps. In
all numerical calculations, we set J = 1. The results of the RS solution (first row of Fig. 2) recover the phase diagram
in the book [3] as shown in Fig. 1. However, near the three phase transition critical lines, Eqs. (3) and (4) are difficult
to converge, as shown in Fig. 2(a). The convergence of the cavity iteration equations is significantly worse, as shown
in Fig. 2. In particular, in the spin glass phase, the cavity method fails to converge correctly, as shown in Fig. 2(d).
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(d) iteration steps of cavity solution
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(f) EA order parameter q of cavity solution

FIG. 2: Phase diagrams of the order parameters m and q and the number of iteration steps for the SK model.
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(c) cavity iteration method

FIG. 3: Phase diagrams of the free energy density for the SK model.
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FIG. 4: Comparison of free energy density and order parameters obtained by different methods for various values of J0.
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B. the free energy

We calculated the free energy density of the RS solution, which is shown in Fig. 3(a) in the same phase diagram
format. Similarly, we calculated the free energy for N = 10 using the enumeration method (Fig. 3(b)) and the cavity
method (Fig. 3(c)), averaging over 20 trials and dividing by N to obtain the free energy density. The results from the
enumeration method are in complete agreement with the RS solution, while the cavity method only yields results for
the paramagnetic phase.
In more detail, we take J0 = 0.5, 2, 10, corresponding to the paramagnetic – spin glass phase transition, the para-

magnetic – ferromagnetic phase transition near the spin glass phase, and the paramagnetic – ferromagnetic phase
transition far from the spin glass phase, respectively. We compare the free energy density, error, and order parameters
obtained by different methods, as shown in Fig. 4.
The first column of Fig. 4 corresponds to the case of J0 = 0.5, where the critical temperature for the paramagnetic

– spin glass phase transition is T/J = 1, i.e., βc = 1/J . The second and third columns of Fig. 4 correspond to the
cases of J0 = 2 and J0 = 10, respectively, where the critical temperature for the paramagnetic – ferromagnetic phase
transition is T/J = J0/J , i.e., βc = 1/J0.
The second row of Fig. 4 shows the relative error of the free energy obtained by the RS solution and the cavity

solution compared to the enumeration method. At high temperatures, the free energies obtained by the three methods
are essentially consistent. As the temperature decreases to the critical temperature, the error of the cavity solution
begins to increase. Beyond the critical temperature, the cavity solution either fails to converge or, in cases where J0
is large, sometimes converges but with an error exceeding 100%. In contrast, the error of the RS solution increases
below the critical temperature but remains acceptable.
Moreover, the results indicate that the RS solution fetches all the order parameters in all cases, as referenced in [1].

While the cavity method only yields the correct m in the paramagnetic phase and the ferromagnetic phase when J0
is large. Although it can obtain the correct q in all phases, but all the results of the cavity method near the phase
transition points are not sufficiently accurate.
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