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Abstract

This note reviews the replica symmetric solution of the SK model, including sufficiently detailed derivations, and then
shows the phase diagrams of the order parameters and free energy by numerical calculations. The author acknowledges
Prof. Hidetoshi Nishimori’s book [1] for its introduction to the mean-field theory of spin glass, and Dr. Haozhe Shan’s
notes [2], which contain extensive derivations and greatly assisted the author in following the derivation.

1 Introduction

The Hamiltonian of the Sherrington-Kirkpatrick model reads [3]

H = −∑
i< j

Ji jσiσ j − h
∑

i

σi , (1)

where σi ∈ {1,−1} are Ising spins, the interaction Ji j between any two spins is a quenched variable with the Gaussian
distribution Ji j ∼ N (J0/N , J2/N). The mean and variance are both proportional to 1/N to ensure the Hamiltonian is
extensive. The probability of each configuration is given by the Gibbs-Boltzmann distribution P(σ) = exp(−βH)/Z ,
where Z is the partition function. We denote Tr=

∑
{σ} =

∑
σ1=±1 · · ·

∑
σN=±1, so that the partition function is expressed

as Z = Tr exp(−βH). The free energy F can be calculated by the partition function as F = −β−1 log Z . However, it is only
the free energy for a fixed interaction J sampled from the distribution. One not depended on any specific system sample
can be obtain by the average over the distribution of J , which is called the quenched average, or disorder average, or
configurational average, and denoted by 〈·〉 in this paper:

〈F〉= − 1
β
〈log Z〉 . (2)

The dependence of 〈log Z〉 on J is so complex that it cannot be solved directly, and this is where the replica method
comes into play.

2 Replica Trick

The replica trick is a mathematical technique based on the application of the formula

〈log Z〉= lim
n→0

〈Zn〉 − 1
n

. (3)

In this case, the replica average of the partition function can be written as

〈Zn〉=
∫

DJ Tr exp

 
β
∑
i< j

Ji j

n∑
α=1

Sαi Sαj + βh
N∑

i=1

n∑
α=1

Sαi

!
, (4)

[1] Nishimori, Hidetoshi, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford, 2001), chap. 1∼3
[2] Replica calculations for the SK model, URL: https://hzshan.github.io/replica_method_in_SK_model.pdf
[3] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-Glass, Phys. Rev. Lett. 35, 1792 (1975).
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Note 2

where the explicit expression of the integral measure DJ is given by the distribution of Ji j

DJ =
∏
i< j

�
dJi j P

�
Ji j

� �∝∏
i< j

dJi j exp

∑
i< j

− N
2J2

�
Ji j − J0

N

�2

 . (5)

Then, Eq. (4) is calculated as

〈Zn〉 ∝ exp

�
βh

N∑
i=1

n∑
α=1

Sαi

�
Tr
∏
i< j

¨∫
dJi j exp

�
− N

2J2
J2

i j +

�
J0

J2
+ β

n∑
α=1

Sαi Sαj

�
Ji j

�«
(6a)

∝ Tr exp

(
1
N

∑
i< j

 
1
2
β2J2

∑
α,β

Sαi Sαj Sβi Sβj + βJ0

∑
α

Sαi Sαj

!
+ βh

N∑
i=1

n∑
α=1

Sαi

)
(6b)

= Tr exp

(
1
N

∑
i< j

 
1
2
β2J2

 
2
∑
α<β

Sαi Sαj Sβi Sβj + n

!
+ βJ0

∑
α

Sαi Sαj

!
+ βh

N∑
i=1

n∑
α=1

Sαi

)
(6c)

= Tr exp

 1
N

∑
i< j

β2J2
∑
α<β

Sαi Sαj Sβi Sβj +
1
2
β2J2n+ βJ0

∑
α

Sαi Sαj

+ βh
N∑

i=1

n∑
α=1

Sαi

 (6d)

= exp

�
(N − 1)β2J2n

4

�
Tr exp

 1
N

∑
i< j

β2J2
∑
α<β

Sαi Sαj Sβi Sβj + βJ0

∑
α

Sαi Sαj

+ βh
N∑

i=1

n∑
α=1

Sαi

 , (6e)

where the integral term in Eq. (6a) is calculated as

I =
∫

dJi j exp

�
−1

2
N
J2

J2
i j +

�
J0

J2
+ β

n∑
α=1

Sαi Sαj

�
Ji j

�
(7a)

=

√√4πJ2

N
exp

 J2
0

J4
+

2J0

J2
β

n∑
α=1

Sαi Sαj + β
2

n∑
α,β

Sαi Sαj Sβi Sβj

!
/

2N
J2

 (7b)

=

√√4πJ2

N
exp

�
J2

0

2NJ2

�
exp

 1
N

 
βJ0

n∑
α=1

Sαi Sαj +
1
2
β2J2

n∑
α,β

Sαi Sαj Sβi Sβj

! , (7c)

and the following trick is used in Eq. (6c)∑
α,β

Sαi Sαj Sβi Sβj = 2
∑
α<β

Sαi Sαj Sβi Sβj +
∑
α

�
Sαi Sαj

�2
= 2

∑
α<β

Sαi Sαj Sβi Sβj + n . (8)

Considering
�∑

i Ai

�2
=
∑

i A2
i +

∑
i 6= j AiA j =

∑
i A2

i + 2
∑

i< j AiA j , i.e.

∑
i< j

AiA j =
1
2

��∑
i

Ai

�2 −∑
i

A2
i

�
, (9)

we have

β2J2

N

∑
i< j

∑
α<β

Sαi Sαj Sβi Sβj =
β2J2

2N

∑
α<β

�∑
i

Sαi Sβi

�2

−∑
i

∑
α<β

(Sαi )
2(Sβi )

2

 = β2J2

2N

∑
α<β

�∑
i

Sαi Sβi

�2

− β2J2n
2

, (10)
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and

βJ0

N

∑
i< j

∑
α

Sαi Sαj =
βJ0

2N

∑
α

�∑
i

Sαi

�2

−∑
i

∑
α

(Sαi )
2

 = βJ0

2N

∑
α

�∑
i

Sαi

�2

− βJ0n
2

. (11)

Thus Eq. (6e) is written as

〈Zn〉 ∝ exp

�
Nβ2J2n

4

�
Tr exp

β2J2

2N

∑
α<β

�∑
i

Sαi Sβi
�2
+
βJ0

2N

∑
α

�∑
i

Sαi
�2
+ βh

N∑
i=1

n∑
α=1

Sαi

 , (12)

where the following approximation in the large N limit is used

exp

�
(N − 3)β2J2n

4
− βJ0n

2

�
≈ exp

�
Nβ2J2n

4

�
. (13)

In order to linearize the quadratic term on the exponential, it is useful to introduce the Hubbard-Stratonovich transform,
an inverse application of the Gaussian integral, as follow

exp

�
y2

2

�
=

∫ ∞
−∞

dxp
2π

exp

�
− x2

2

�
exp(x y) . (14)

Let x = βJ
p

Nqαβ , and y = βJ
∑

i Sαi Sβi /
p

N , then we have

exp
β2J2

2N

�∑
i

Sαi Sβi

�2

= βJ
p

N

∫ ∞
−∞

dqαβp
2π

exp

�
−β2J2N

q2
αβ

2
+ β2J2qαβ

∑
i

Sαi Sβi

�
. (15)

Let x =
p
βJNmα, and y =

p
βJ/N

∑
i Sαi , then we have

exp
βJ0

2N

�∑
i

Sαi

�2

=
Æ
βJN

∫ ∞
−∞

dmαp
2π

exp

�
−βJ0Nm2

α + βJ0mα
∑

i

Sαi

�
. (16)

Then Eq. (12) can be written as

〈Zn〉 ∝exp

�
Nβ2J2n

4

�∫ ∞
−∞

∏
α<β

dqαβ
∏
α

dmα Tr exp

−β2J2N
2

∑
α<β

q2
αβ − βJ0N

2

∑
α

m2
α


× exp

β2J2
∑
α<β

qαβ
∑

i

Sαi Sβi + βJ0

∑
α

mα
∑

i

Sαi

exp

�
βh

N∑
i=1

n∑
α=1

Sαi

�
(17a)

=exp

�
Nβ2J2n

4

�∫ ∞
−∞

∏
α<β

dqαβ
∏
α

dmα exp

−β2J2N
2

∑
α<β

q2
αβ − βJ0N

2

∑
α

m2
α


× Tr exp

β2J2
∑
α<β

qαβ
∑

i

Sαi Sβi + β
∑
α

(J0mα + h)
∑

i

Sαi

 (17b)

=exp

�
Nβ2J2n

4

�∫ ∞
−∞

∏
α<β

dqαβ
∏
α

dmα exp

N

 
−β2J2

2

∑
α<β

q2
αβ − βJ0

2

∑
α

m2
α + logTr eL

! , (17c)

where we define
L≡ β2J2

∑
α<β

qαβSαi Sβi + β
∑
α

(J0mα + h)Sαi , (18)
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in Eq. (17b) and used
N∏

i=1

Tr eL =
�
Tr eL

�N
= exp

�
N log

�
Tr eL

��
. (19)

In large N limit, the integral in Eq. (17c) can be calculated with the Laplace approximation, also known as the saddle-
point approximation, i.e. ∫

dm eNF(m) N→∞−−−→ eNFmax(m⋆) . (20)

Let

F = −β2J2

2

∑
α<β

q2
αβ − βJ0

2

∑
α

m2
α + logTr eL , (21)

and the result of the integral is

〈Zn〉 ∝ exp

Nβ2J2n
4
− β2J2N

2

∑
α<β

�
q⋆αβ

�2 − βJ0N
2

∑
α

�
m⋆α
�2
+ N logTr eL

 (22a)

= exp

Nn

β2J2

4
− β2J2

2n

∑
α<β

�
q⋆αβ

�2 − βJ0

2n

∑
α

�
m⋆α
�2
+

1
n

logTr eL

 (22b)

≈ 1+ Nn

(
β2J2

4
− β2J2

2n

∑
α<β

�
q⋆αβ

�2 − βJ0

2n

∑
α

�
m⋆α
�2
+

1
n

logTr eL
)

(22c)

where we used Taylor expansion in Eq. (22c), and q⋆
αβ

, m⋆α = argmax{qαβ ,mα}F . Through ∂
∂ qαβ

F = ∂
∂mα

F = 0, we arrive
at

q⋆αβ =
1
β2J2

∂

∂ qαβ
logTr eL =

1
β2J2

Tr eLβ2J2

Tr eL
SαSβ =

Tr SαSβeL

Tr eL
, (23)

m⋆α =
1
βJ0

∂

∂mα
logTr eL =

1
βJ0

Tr eLβJ0

Tr eL
Sα =

Tr SαeL

Tr eL
. (24)

The free energy density f is finally written as

f = − 1
N
〈F〉= − 1

β
lim
n→0

〈Zn〉 − 1
Nn

= − 1
β

lim
n→0

(
β2J2

4
− β2J2

2n

∑
α<β

�
q⋆αβ

�2 − βJ0

2n

∑
α

�
m⋆α
�2
+

1
n

logTr eL
)

. (25)

3 Replica Symmetry Ansatz

To continue solving Eq. (25), we need to consider the dependencies of qαβ and mα for different replica index. A naive
idea is that they are independent of index, i.e. ∀α,β , qαβ = q, mα = m, also called replica symmetry ansatz. The replica
symmetric free energy is written as

fRS = − 1
β

lim
n→0

�
β2J2

4
− β2J2(n− 1)

4
q2 − βJ0

2
m2 +

1
n

logTr eL
⋆

�
(26a)

= − 1
β

�
β2J2

4

�
1+ q2

�− βJ0

2
m2 + lim

n→0

1
n

logTr eL
⋆

�
, (26b)

where L⋆ ≡ β2J2q
∑
α<β SαSβ + β (J0m+ h)

∑
α Sα.
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The final item is calculated as

1
n

logTr eL
⋆

=
1
n

logTr exp

¨
1
2
β2J2q

�∑
α

Sα
�2

− 1
2
β2J2qn+ β (J0m+ h)

∑
α

Sα
«

(27a)

=
1
n

log

¨
exp

�
−β2J2qn

2

�
Tr exp

�
1
2
β2J2q

�∑
α

Sα
�2

+ β (J0m+ h)
∑
α

Sα
�«

(27b)

=
1
n

log

�
exp

�
−β2J2qn

2

�
Tr

∫
Dz exp

�
βJ
p

qz
∑
α

Sα + β (J0m+ h)
∑
α

Sα
��

(27c)

=
1
n

log

∫
Dz exp

n
n log

�
2cosh

�
β Ĥ(z)

��− n
2
β2J2q

o
(27d)

≈ 1
n

log

�
1+ n

∫
Dz log

�
2cosh

�
β Ĥ(z)

��− n
2
β2J2q

∫
Dz

�
(27e)

≈
∫

Dz log
�
2cosh

�
β Ĥ(z)

��− 1
2
β2J2q , (27f)

where we used Hubbard-Stratonovich transform again in Eq. (27b) and reparameterized ẑ by a standard Gaussian variable
z, rewriting integral variables as Gaussian integral measures

exp

�
1
2
β2J2q

�∑
α

Sα
�2�
=

∫
dẑ

√√β2J2q
2π

exp

�
− ẑ2

2
β2J2q

�
exp

�
β2J2qẑ

∑
α

Sα
�

(28a)

=

∫
dzp
2π

exp

�
−z2

2

�
exp

�
βJ
p

qz
∑
α

Sα
�

(28b)

=

∫
Dz exp

�
βJ
p

qz
∑
α

Sα
�

. (28c)

The last item in Eq. (27c) is calculated as

Tr

∫
Dz exp

�
βJ
p

qz
∑
α

Sα + β (J0m+ h)
∑
α

Sα
�
=

∫
Dz Tr exp

�∑
α

Sα
�
βJ
p

qz + β (J0m+ h)
��

(29a)

=

∫
Dz

n∏
α=1

Tr exp
�
Sαβ Ĥ(z)

�
(29b)

=

∫
Dz
¦

2cosh
�
β Ĥ(z)

�©n
(29c)

=

∫
Dz exp

¦
n log

�
2cosh

�
β Ĥ(z)

��©
, (29d)

where we defined Ĥ(z)≡ J
p

qz + (J0m+ h).
Finally, the replica symmetric free energy is

fRS = − 1
β

�
β2J2

4

�
1+ q2

�− βJ0

2
m2 + lim

n→0

�∫
Dz log

�
2cosh

�
β Ĥ(z)

��− 1
2
β2J2q

��
(30a)

=
βJ2

4
(q− 1)2 +

J0

2
m2 − 1

β

∫
Dz log

�
2cosh

�
β Ĥ(z)

��
. (30b)

Through

∂

∂m
fRS = −βJ0m+

∫
Dz (tanhβ Ĥ(z)) · βJ0 = 0 , (31)

∂

∂ q
fRS =

β2J2

2
(q− 1) +

∫
Dz (tanhβ Ĥ(z)) · βJ

2
p

q
z = 0 , (32)
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we obtain a set of closed equations, called saddle point equations

m=

∫
Dz tanhβ Ĥ(z) , (33)

q = 1−
∫

Dz sech2 β Ĥ(z) =

∫
Dz tanh2 β Ĥ(z) . (34)

4 Phase diagram

Considering a simple case where h = 0, we use numerical methods to iterate Eq. (33) and Eq. (34), and then calculate
the free energy Eq. (30b) with the fixed points of m and q. The results of order parameters m and q are shown in Fig. 1,
which (especially the interaction steps) recover the well-known phase diagram of the SK model as shown in Fig. 2(a) [4].
The free energy density with different J0 and T is shown in Fig. 2(b).

Due to the Frustration, the spin in the SK model is frozen at low temperature, yet remains highly disordered, with
the order parameter m= 0. But this is a phase different from the paramagnetic phase (also m= 0) and is called the spin
glass phase. In short, m 6= 0 identifies the ferromagnetic phase, and the EA order parameter q is introduced to distinguish
between the paramagnetic phase (q = 0) and the spin glass phase (q 6= 0).

0 1 2
J0/J

0

1

2

T/
J

100

200

300

400

(a) iteration steps

0 1 2
J0/J

0

1

2

T/
J

0.0

0.2

0.4

0.6

0.8

(b) magnetization m

0 1 2
J0/J

0

1

2

T/
J

0.2

0.4

0.6

0.8

(c) EA order parameter q

Figure 1: The results of the replica symmetric solution for the SK model by numerical iteration.

(a) the phase diagram of order parameters1
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(b) the phase diagram of free energy

Figure 2: The phase diagram of the SK model.

[4] Nishimori, Hidetoshi, Statistical Physics of Spin Glasses and Information Processing: An Introduction (Oxford, 2001), p. 20
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