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Fronhofer diffraction of a single slit, Fresnel diffraction and Fronhofer diffraction of a circular hole,
are three basic types of diffraction. We first deduce the results of the these diffractions theoretically
and verify them experimentally. Using simulations, we further study the diffraction patterns and
observe the triple splitting of the primary maximum in the Frontier diffraction pattern of the laser.

I. INTRODUCTION

Diffraction of light is one of the basic characteris-
tics of light fluctuation, which is widely used in spec-
tral analysis, crystal analysis, holography, light infor-
mation processing and other precision measurement
and modern optical technology. Diffraction of light
refers to the phenomenon that when light encoun-
ters an obstacle or a small aperture in the process
of propagation, the light will deviate from the path
of linear propagation and propagate around behind
the obstacle. According to the distance between light
source and aperture, aperture and observation screen,
diffraction can be divided into Fresnel diffraction and
Fronhofer diffraction; according to the type of obsta-
cle, diffraction can be divided into single-slit diffrac-
tion, multi-slit diffraction, circular aperture diffrac-
tion, etc.. Among them, the more basic ones are
single-slit Fronhofer diffraction, circular-hole Fresnel
diffraction, and Fronhofer diffraction. Studying the
basic principles and physical images of these three
diffractions clearly is essential for understanding the
diffraction of light and for further optical learning and
research.

Fresnel was the first physicist to theoretically solve
the distribution of diffracted fields, and in 1818 he
successfully explained the diffraction phenomenon by
introducing the concept of ”coherent superposition of
subwaves”, based on the concept of subwaves in Huy-
gens’ principle and the idea of light wave interfer-
ence. In 1880, Kirchhoff derived the expression for the
edge-valued definite boundary of the passive space by
using the Green’s formula of vector field theory. In
contrast to the Fresnel diffraction integral, Kirchhoff
made an important contribution to the practical solu-
tion of diffraction fields by specifying the expressions
for the tilt factor and the scale factor, and by pointing
out that the integration surface is not limited to the
isophase surface.

Kirchhoff made some assumptions about the bound-
ary conditions, called Kirchhoff boundary conditions,
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in order to change the integration surface of the Fres-
nel diffraction integral formula into a finite surface.
However, from the viewpoint of the strict electromag-
netic wave theory, Kirchhoff’s boundary conditions
are not self-consistent, and its treatment of the light
field does not satisfy the boundary conditions of the
electromagnetic field. The strict diffraction theory of
light waves should be based on the vector wave diffrac-
tion theory of high-frequency electromagnetic fields,
whose boundary conditions are significantly different
from the Kirchhoff boundary conditions. However, in
general, the diffraction field we solve for satisfies the
condition of paraxiality and the condition that the
long period of the optical wave is smaller than the
linearity of the optical aperture, so some approxima-
tions can be made to the Kirchhoff diffraction integral
equation to obtain the more commonly used paraxial
diffraction integral equation.

According to the distance between the light source,
diffraction screen and receiving screen, diffraction sys-
tems can be divided into two categories: Fresnel
diffraction and Fronhofer diffraction. The diffraction
system is Fresnel diffraction, or near-field diffraction,
when at least one of the distances between the source-
diffraction screen and the diffraction screen-receiving
screen is finite; when both distances are infinite, the
diffraction system is Fronhofer diffraction, or far-field
diffraction. From the theoretical point of view, Fron-
hofer diffraction is a special case of Fresnel diffraction,
but from the practical point of view, the theoretical
calculation and experimental implementation of Fron-
hofer diffraction are easier and more valuable for ap-
plication, and it is closely related to Fourier optics in
modern transformation optics.

In this paper, we first give a formula for the Fron-
hofer diffraction of a single slit based on the integral
formula for paraxial diffraction, and then discuss the
Fresnel diffraction of a circular hole using the half-
wave band theory and give a detailed derivation of
the formula for the Fronhofer diffraction of a circu-
lar hole. We have verified these theories experimen-
tally and made further investigations using simula-
tions. We observed the triple splitting of the primary
maximum in the Fronhofer diffraction pattern of the
laser and found some related theoretical explanations
by reviewing other literature.
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II. THEORY OF DIFFRACTION

A. Diffraction theory of scalar light waves

Huygens proposed a hypothesis in 1690: each point
on the wavefront can be considered as a secondary
perturbation center emitting a spherical subwave, and
the envelope of these subwaves at a later time is the
new wavefront at that time.

Fresnel added to the Huygens principle based on
the interference theory of light: considering that the
Huygens subwaves come from the same source, they
should be coherent, and thus the optical vibration at
any point outside the wavefront should be the result
of a coherent superposition of all the subwaves on the
wavefront at that point. the mathematical expression
of the Huygens-Fresnel principle is written as

Ẽ(P ) = C

∫∫
Σ

Ẽ(Q)
exp(ikr)

r
K(θ)dσ (1)

where C is the constant of proportionality, Ẽ(Q) is
the complex amplitude distribution of the sub-wave

source itself, exp(ikr)
r is the perturbation of the sub-

waves emitted by the surface element on the sub-wave
source at the field point, and K(θ) is the tilt factor.

Kirchhoff’s work in fact complements the scaling
constant and tilt factor in Eq. (1)

C =
1

iλ
K(θ) =

cos(n, r)− cos(n, l)

2
(2)

where λ is the wavelength of light, which also indi-
cates that the equation applies only to monochromatic
waves.i is the imaginary unit, which indicates that the
vibrational phase of the subwave source is 90° ahead
of the incident wave.(n, r) and (n, l) indicate the an-
gle between the two lines, see Fig.1 for the specific
meaning.

FIG. 1. Explanation of each physical quantity in the
expression of diffraction integral

The paraxial approximation means that the
monochromatic wave is incident vertically on the aper-
ture Σ, which requires that (n, r), (n, l) < 0.5 rad.And
both the linearity of the diffracted aperture and the
linearity of the diffraction pattern on the viewing
screen are much smaller than the distance from the
aperture to the viewing screen.Therefore we can make
the following approximation

K(θ) =
cos(n, r)− cos(n, l)

2
≈ 1,

exp(ikr)

r
≈ 1

z
exp(ikr)

where the effect of the variation of r in the complex
index on the phase cannot be neglected and cannot
be approximated as the distance z from the hole to
the observation screen. The integral equation for the
paraxial diffraction can be written as

Ẽ(P ) =
1

iλz

∫∫
Σ

Ẽ(Q) exp(ikr)dσ (3)

Next, we have a further discussion of r in the right-
angle coordinate system in space.Taking the right
angle coordinates of the plane where the diffraction
screen is located as (x1, y1) and the right angle co-
ordinates of the plane where the receiving screen is
located as (x, y), then r can be expressed as

r =

√
z2 + (x− x1)

2
+ (y − y1)

2

Performing a Taylor expansion on r and tak-
ing only the first two terms, when the condition

k
8z3

[
(x− x1)

2
+ (y − y1)

2
]2

max
<< π (called Fresnel

approximation) is satisfied:

r ≈ z +
x2 + y2

2z
− xx1 + yy1

z
+
x2

1 + y2
1

2z
(4)

The fourth term in the above equation all de-
creases as z increases. The fourth term can be ig-
nored when z is large enough to satisfy the condi-

tion k
(x2

1+y21)max

2z << π(called the Fronhofer approxi-
mation). Under this approximation r can be written
as

r ≈ z +
x2 + y2

2z
− xx1 + yy1

z
(5)

Substituting it into Eq. (3), we get the Fronhofer
diffraction integral formula, which is the basis for the
quantitative solution of the diffraction field in the next
subsection.

Ẽ(P ) =
1

iλz
exp(ikz) exp

[
ik

2z
(x2 + y2)

] ∫∫
Σ

Ẽ(Q) exp

[
− ik

z
(xx1 + yy1)

]
dσ (6)
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FIG. 2. Fronhofer diffraction of a rectangular hole

FIG. 3. Schematic diagram of Fronhofer diffraction device

B. Fraunhofer diffraction of a single slit

The Fraunhofer diffraction of a single slit is actually
a generalization of the Fraunhofer diffraction of a rect-
angular hole.We first consider the Fronhofer diffrac-
tion of a rectangular hole as shown in Fig.2.

Since Fronhofer diffraction requires the distance
from the light source to the diffraction screen and from
the diffraction screen to the observation screen to be
infinite. Usually, as shown in Fig.3, a convex lens is
placed in front of the diffraction screen to change the
light from the point source into parallel light, and a
convex lens is placed behind the diffraction screen to
converge the diffraction pattern observed at infinity
to the focal plane of the lens.

When the lens is close to the diffraction screen, the
center of the lens can be considered to coincide with
the coordinate origin of the diffraction screen.r can be
written as

r ≈ f +
x2 + y2

2f

And then Eq. (6) can be rewritten as

Ẽ = C ′ exp

[
ik

(
x2 + y2

2f

)]∫ a
2

− a
2

exp (−ik sin θxx1) dx1

∫ b
2

− b
2

exp (−ik sin θyy1) dy1

= Ẽ0

(
sin sin θxa

2
k sin θxa

2

)(
k sin θyb
k sin θyb

2

)
exp

[
ik

(
x2 + y2

2f

)] (7)

where C ′ = CA′

f exp(ikf), A′ means that the complex

amplitude Ẽ(Q) is a constant A′ when the plane wave
is incident vertically on the diffraction screen. The
light intensity distribution is

I = |Ẽ|2 = I0

(
sin k sin θxa

2
k sin θxa

2

)2(
k sin θyb

sin
k sin θyb

2

)2

= I0

(
sinα

α

)2(
sinβ

β

)2
(8)

where I0 is the light intensity at point P0, and α, β is

α =
k sin θxa

2
=
π

λ
a sin θx, β =

k sin θyb

2
=
π

λ
b sin θy

A single slit is actually a rectangular hole with one
side much smaller in width than the other, e.g. b� a,
so the diffraction effect of the incident light in the
y-axis direction can be neglected and the diffraction
pattern is distributed only on the x-axis. The light
intensity distribution of single-slit diffraction is

I = I0

(
sinα

α

)2

(9)

The relative light intensity distribution of the
single-slit Fraunhofer diffraction pattern plotted ac-
cording to Eq. (9) is shown in Fig.4

FIG. 4. The relative light intensity distribution of the
single-slit Fraunhofer diffraction pattern
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C. Fresnel diffraction of a circular hole

We make the Fresnel approximation and the Fron-
hofer approximation for r in Section II A. Substi-
tuting the Fresnel approximation Eq. (4) for r into
the integral equation for the paraxial diffraction, the
diffracted field can be solved quantitatively as in Sec-
tion II B. However, we can also obtain the diffraction
pattern and spatial light field distribution by another
semi-quantitative method, called the half-waveband
method.

Suppose a monochromatic plane wave is incident
perpendicular to the circular aperture and the wave-
front within the aperture is Σ. Now a series of spher-
ical surfaces are made with P0 as the center and
z1 + λ

2 , z1 + λ, · · · , z1 + jλ
2 , · · · as the radius. These

spherical surfaces intersect with Σ to form a circle,
and Σ is divided into a ring of bands [see Fig.5], which
are called Fresnel half-wave bands. According to the
Huygens-Fresnel principle, the complex amplitude at
the point P0 is the superposition of the complex am-
plitudes of the subwaves emitted by all the bands on
the wavefront Σ at the point P0. The amplitude of
each band at P0 is proportional to the area of the
band, and inversely proportional to the distance from
the band to P0, and depends on the tilt factor K.
Let the band at the center of the circle C be the first
band, and the outward bands 2, 3, ... j, ... Then the
amplitude of the jth band at P0 can be expressed as∣∣∣Ẽj∣∣∣ = C

Aj1 + cos θ

rj
(10)

where C is a constant of proportionality, rj is the
distance of the j waveband to point P0, and Aj is
the area of the j waveband. When z1 � λ, there is

ρj =

[(
z1 + j

λ

2

)2

− z2
1

]1/2

≈
√
jz1λ

thus

Aj ≈ πρ2
j − πρ2

j−1 ≈ πz1λ

which shows that the areas of the individual bands are
approximately equal.The amplitude generated by each
waveband at point P0 is only related to the distance
and inclination factor of each waveband to point P0.
The larger the number j of the waveband, the larger
the distance rj and the tilt angle, so that the ampli-
tude of the vibration of each waveband at point P0

will decrease monotonically with the increase of j.
Considering that the optical range difference of ad-

jacent bands to P0 is half a wavelength, the phase dif-
ference of their subwaves to P0 is π. So the complex
amplitudes of adjacent bands are one positive and one
negative, the total complex amplitude of each band at
P0 is

Ẽ =
∣∣∣Ẽ1

∣∣∣− ∣∣∣Ẽ2

∣∣∣+ ∣∣∣Ẽ3

∣∣∣− ∣∣∣Ẽ4

∣∣∣+ · · ·− (−1)n
∣∣∣Ẽn∣∣∣ (11)

FIG. 5. Half-waveband method for splitting wavefront

When the number of wavebands n is large enough,
the difference between |En−1| and |En| is small, so
that Eq. (11) can be written as

Ẽ =

∣∣∣Ẽ1

∣∣∣
2
±

∣∣∣Ẽn∣∣∣
2

(12)

In the above equation, the sign ”+” is taken when
n is odd, and the sign ”-” is taken when n is even.
This means that the center of the diffraction pattern
changes in light and dark along with the odd-even
variation of the number of half-wave bands. This is
the periodic variation of the diffraction field along the
longitudinal direction.

D. Fronhofer diffraction of a circular hole

The Fronhofer diffraction of a circular hole is still
calculated based on the Fronhofer diffraction integral
formula Eq.(6). However, since the integration inter-
val is a circular surface and the calculation is very
complicated, most of the optics textbooks only give
the final light intensity distribution formula instead
of discussing it in detail. In this subsection, we refer
to the textbook [1] to give the solution procedure.

We need to rewrite Eq.(6) in the polar coordi-
nate system.Considering the conversion relationship
between right-angle coordinate system and polar co-
ordinate system

x1 = r1 cosψ1 y1 = r1 sinψ1

x = r cosψ y = r sinψ

dσ = r1 dr1 dψ1

so

x

f
=
r cosψ

f
= θ cosψ

y

f
=
r sinψ

f
= θ sinψ

where θ is the diffraction angle (the angle between the
diffraction direction OP and the optical axis).

Substituting the above relationship into the Eq. (6)
we can get the complex amplitudes at point P
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Ẽ(P ) = C ′
∫ a

0

∫ 2π

0

exp [−ik (r1θ cosψ1 cosψ + r1θ sinψ1 sinψ) r1 dr1 dψ1]

= C ′
∫ a

0

∫ 2π

0

exp [−ikr1θ cos (ψ1 − ψ) r1 dr1 dψ1]

(13)

where C ′ = CA
f exp(ikf); the other phase factor

exp
[
ik
(
x2+y2

2f

)]
is eliminated in the calculation of

the light intensity and has been omitted in the above
equation for simplicity.

According to the integral representation of the
Bessel function of order zero and the recurrence re-
lation of the Bessel function

1

2π

∫ 2π

0

exp (−ikr1θ cosψ1) dψ1 = J0 (kr1θ)

d

dz
[Z J1(Z)] = Z J0(Z)

(14)

Eq.(13) can be rewritten as

Ẽ(P ) = 2πC ′
∫ a

0

J0 (kr1θ) r1 dr1

=
2πC ′

(kθ)2

∫ kaθ

0

(kr1θ) J0 (kr1θ) d (kr1θ)

= πa2C ′
2 J1(kaθ)

kaθ

so the light intensity at point P is

I =
(
πa2
)2 |C ′|2 [2 J1(kaθ)

kaθ

]2

= I0

[
2 J1(Z)

Z

]2

(15)

where I0 =
(
πa2
)2 |C ′|2 is the light intensity at point

P0, and Z = kaθ.Based on Eq.(15), the relative light
intensity distribution of the Fronhofer diffraction of a
circular hole can be plotted as shown in Fig.6.

FIG. 6. The relative light intensity distribution of the
Fronhofer diffraction of a circular hole

It can be seen that the intensity of the submaxi-
mum is much less than that of the central primary
maximum. In the diffraction pattern, the majority of
the light energy is concentrated in the central bright
spot, commonly called the Airy spot. The radius r0

of the Airy spot is determined by the value of Z cor-
responding to the first intensity of zero.

Z =
kar0

f
= 1.22π

So

r0 = 1.22f
λ

2a
, θ0 =

r0

f
=

0.61λ

a
(16)

This indicates that the size of the diffraction spot
is inversely proportional to the radius of the circular
aperture and directly proportional to the wavelength
of the light wave.

III. EXPERIMENT

We have done experiments on single slit Fronhofer
diffraction, circular hole Fresnel diffraction and circu-
lar hole Fronhofer diffraction to verify the conclusions
of subsection B.C&D in Section.II respectively.

A. Fraunhofer diffraction of a single slit

We have performed a single-slit Fraunhofer diffrac-
tion experiment using a laser. Unlike the theoretical
derivation in the previous section, the laser can be re-
garded as a parallel source when directly incident on
the slit due to its small divergence angle. Moreover,
when the distance between the observation screen and
the slit is far enough, we can consider him as infinity,
which requires the following conditions to be satisfied:

a2

8Zλ
� 1 (17)

This equation ensures that the maximum optical
range difference between the secondary waves emit-
ted from each point on the slit arriving at point P0 is
much smaller than the wavelength lambda.

We used a He-Ne laser with a wavelength of 632.8
nm, a slit width of 0.25 mm, and a distance from the
observation screen to the slit of 1.07 m. We measured
the light intensity distribution of the diffraction pat-
tern in the x-axis direction and compared it with the
theoretical value, as shown in Fig.7(a).
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FIG. 7. (a) Relative light intensity distribution of single slit Fraunhofer diffraction. (b) Relative light intensity distri-
bution after fixing the system deviation. (c) Calibration of the linear working interval of the optical power meter.

It is noted that there is a systematic deviation be-
tween the relative light intensity distribution obtained
from our experiments and the theoretical value. We
believe that this may be caused by errors in the mea-
surement of the slit width, since the instrument we
used to measure the slit width was not calibrated. So
we tried to adjust the slit width used in the theoretical
calculation and set it to 0.27 mm when the result is
shown in Fig.7(b). It can be seen that the experiment
and the theory are in good agreement.

In addition, we have calibrated the optical power
meter using a bromine tungsten lamp. As shown in
Fig.7(c), the linearity of the optical power meter is
good in the interval we used.

B. Fresnel diffraction of a circular hole

In the Fresnel circular aperture diffraction experi-
ment, we verified semi-quantitatively the correctness
of the half-wave band theory. We observed that when
the observation screen is moved in the longitudinal di-
rection, the central spot appears to change brightly,
which is in accordance with the theoretical prediction
of the half-wave band. We recorded the locations of
the bright and dark spots appearing at different aper-
tures and compared them with the theoretical values,
as shown in Table I.

Due to the space limitation of our experiment, we
can only verify in the range of 10 cm to 1 m. The num-
ber of half-wave bands that can be observed varies for
different radius of small holes. The larger the radius of
the holes, the larger the number of half bands we can
observe. In general, the locations where we observe
the appearance of bright and dark spots are consis-
tent with the half-wave band theory.

We took a photograph of the diffraction pattern and
processed it using MATLAB to make the relative light
intensity distribution in the x-axis direction, as shown
in Fig.8. The diffraction pattern we obtained is not
very beautiful due to the limited shooting equipment.
However, it can still be seen that the center of the

TABLE I. Verification of the longitudinal light intensity
distribution of the Fresnel circular hole diffraction pattern.
The focal length of the beam expander is 4.5 mm, the
distance from the beam expander to the small hole is 20
cm, and the radius of the circular holes are 0.75 mm, 0.5
mm, and 0.35 mm, respectively.

ρ = 0.75 mm

ja Center Location/cmb Theory/cm

6 dark 61.7 61.1
7 bright 38.4 36.2
8 dark 25.4 25.7
9 bright 20.7 19.9

ρ = 0.5 mm

j Center Location/cm Theory/cm

3 bright 41.9 40.3
4 dark 21.8 19.9

ρ = 0.35 mm

j Center Location/cm Theory/cm

2 dark 20.1 19.1
3 bright 9.5 9.6

a Number of half-wave bands
b Experimentally measured locations of bright and dark spots

FIG. 8. The relative light intensity distribution of the
Fresnel diffraction of a circular hole

pattern is clearly a dark spot.
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C. Fronhofer diffraction of a circular hole

In the Fronhofer diffraction experiments of a circu-
lar hole, we mainly measured the diameter of the Airy
spot produced by small holes of different radius. As
in subsectionA, we used a laser to generate a parallel
light source for Fronhofer diffraction. We used a He-
Ne laser with a wavelength of 632.8 nm and set the
distance from the viewing screen to the aperture as
1 m. The diameters of the Airy spots calculated us-
ing Eq.(16) and measured experimentally are shown
in Table II.

TABLE II. The diameters of the Airy spots calculated
using Eq.(16) and measured experimentally

Diameter/mma Theory/mm Experiment/mm

0.15 10.29 9.8
0.3 5.15 6.3
0.5 3.09 3.4

a Diameter of the circular hole

As shown in Fig.9, as the diameter of the circular
hole increases, the distance between the stripes be-
comes smaller, and there is greater human error in
distinguishing the edge of the Airy spot and measur-
ing its diameter.Therefore, here, we only do a rough
verification of the Fronhofer diffraction. More detailed
discussion and validation will be given in the simula-
tion section.

FIG. 9. Measurement of Airy spot diameter in the experi-
ment. (a)φ = 0.15 mm. (b)φ = 0.3 mm. (c)φ = 0.5 mm

In addition, we also took photographs of the Fron-
hofer diffraction pattern and made relative light in-
tensity distribution curves, as shown in Fig.10. We
took the photos with a slightly larger exposure, which
has the advantage of seeing more submaximum bright
lines, but the disadvantage of not showing the inten-
sity distribution of the central bright lines.

FIG. 10. The relative light intensity distribution of the
Fronhofer diffraction of a circular hole

IV. SIMULATION

A. Fronhofer diffraction of slits with different
widths

We simulated the Fronhofer diffraction from a single
slit with the help of the seelight optical simulation
platform and explored the effect of the slit width on
the diffraction pattern.

The device diagram of Fronhofer diffraction with a
single slit is shown in Fig.11 (a). We set the diameter
of the light source as 1mm, the diameter of the circular
hole as 0.2mm, 0.3mm, 0.4mm, 0.5mm, and the dis-
tance of vacuum transmission as 5m. The diffraction
patterns of these four slits with different widths are
shown in Fig.11 (c). We plot the relative light inten-
sity distribution curves of the four diffraction patterns
in the same figure, as shown in Fig.11 (b).

It can be seen that as the slit width increases, the
width of the central bright spot is decreasing and the
brightness is increasing; the distance between the indi-
vidual stripes is decreasing. This is in accordance with
our derivation in Section II B. From another point
of view, it is also consistent with our physical intu-
ition. Diffraction occurs when the size of the barrier
is smaller than or close to the wavelength. As the size
of the barrier increases, diffraction becomes less and
less pronounced. When the slit width is large enough,
the diffraction pattern will no longer appear, but a
bright spot produced by the light propagating in a
straight line.

In this simulation we used a parallel light source in-
stead of a laser. The main difference between a paral-
lel light source and a laser is that the former produces
a plane wave while the latter is a Gaussian beam. We
have used the plane wave assumption in our theoret-
ical derivation, so the simulation with a parallel light
source can give results more similar to the theory. Fur-
ther discussion of the differences between parallel light
sources and lasers will be given later.
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FIG. 11. (a) The device diagram of Fronhofer diffraction with a single slit. (b) The relative light intensity distribution
curves of the four diffraction patterns in the same figure. (c) The diffraction patterns of these four slits with different
widths.

B. Fresnel diffraction of a circular hole

We have roughly verified the correctness of the half-
wave band theory of Fresnel diffraction in our experi-
ments. In this subsection we will use simulations for a
more precise verification and explore the effect of the
beam expander in Fresnel diffraction.

We first performed a set of simulations without the
beam expander. We set both the radius of the laser
and the Gaussian beam waist to 1 mm, and the diam-
eter of the circular hole to 0.3 mm. We theoretically
calculated the positions where 2, 3, 4, and 5 half-wave
bands appeared and placed the corresponding obser-
vation screens to obtain diffraction patterns, as shown
in Fig.12. At the position of 2 and 4 half-wave bands,
the center of the pattern is dark spot, and at the po-
sition of 3 and 5 half-wave bands, the center of the

pattern is bright spot, which is in good accordance
with the theory of half-wave bands.

Then we performed a set of simulations using a
beam expander lens. The expanded beam mirror is a
combination of a concave lens and a convex lens. We
set the focal length of the concave lens to -2mm, the
distance of the vacuum transmission to 3mm, and the
focal length of the convex lens to 6mm, and these form
a beam expander. We theoretically calculated the po-
sitions where 2, 3, 4, and 5 half-wave bands appeared
and placed the corresponding observation screens to
obtain diffraction patterns, as shown in Fig.13.

Comparing Fig.12 and Fig.13, we can find that the
diffraction pattern with the beam expander is more
blurred. We believe that this is because the beam
in the beam expander is not received in its entirety,
which leads to a decrease in the dimensionality in the
later calculation.
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FIG. 12. Fresnel diffraction without beam expander.
(a) φ = 0.3 mm, k = 2. (b) φ = 0.3 mm, k = 3.
(c) φ = 0.3 mm, k = 4. (d) φ = 0.3 mm, k = 5.

FIG. 13. Fresnel diffraction with beam expander.
(a) φ = 0.3 mm, k = 2. (b) φ = 0.3 mm, k = 3.
(c) φ = 0.3 mm, k = 4. (d) φ = 0.3 mm, k = 5.

C. The difference between laser and parallel
light sources

As mentioned before, we used the assumption of
plane waves in the theoretical derivation. But in real-
ity, the laser we usually use emits a Gaussian beam.
Each time the laser is reflected in the resonant cavity,
it is equivalent to a diffraction occurring. Diffraction
is equivalent to a Fourier transform of the wavefront.

FIG. 14. Fronhofer diffraction pattern of laser and parallel
light sources, when other conditions are the same. On the
left is the laser, and the diffraction pattern has a clear
triple split. On the right is the parallel light, and the
diffraction pattern is normal.

When the wavefront amplitude distribution is a Gaus-
sian function, the Fourier transform of the Gaussian
function is still itsdelf and the wavefront distribution
reaches stability. Therefore the beam from the laser is
Gaussian distributed along the transverse direction.

In terms of diffraction effects, Gaussian beams dif-
fer from parallel light by three factors: the spherical
wavefront, the Gaussian-type distribution of ampli-
tudes in the beam cross-section, and the finite beam
aperture.

In the literature[2] [3], the phenomenon of the triple
splitting of the primary maximum in the Fronhofer
diffraction of a thin filament under a Gaussian beam
was proposed and explained. In the theory of the
literature [3], the triple splitting of the primary max-
imum appears in the diffraction pattern of a fine fila-
ment under Gaussian beam irradiation, but not in the
diffraction pattern of a single slit.

However, in our simulation, we observe that the
triple splitting of the primary maximum also appears
in the Fronhofer diffraction pattern of the single slit.
[See Fig.14.]

We are not yet able to give a valid explanation. This
is a problem that deserves our further study.
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V. CONCLUSION

We experimentally measured the relative light in-
tensity distribution of the pattern of Fraunhofer
diffraction with a single slit, verified the formula of
Fraunhofer diffraction with a single slit, and then fur-
ther studied the effect of the slit width on the diffrac-
tion pattern by simulation.

Our measurements and simulations of the light field
distributions in the x- and y-axis directions for Fresnel
diffraction of a circular hole verify the correctness of
the half-wave band theory. In addition we discuss the
effect of the beam expander on Fresnel diffraction.

We have verified the Fronhofer diffraction of a cir-

cular hole by measuring the diameter of the Airy spot.
During the simulation, we found the phenomenon

of the triple splitting of the primary maximum in the
Fronhofer diffraction of a single slit under a Gaussian
beam, and we are ready to carry out further studies.
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